A B C D E G I L M N P R S T 

A

AbstractBayesianDistribution - Class in com.mapr.stats.random
Expresses the common characteristics of a two-level distribution in which the higher level distribution describes a prior distribution of parameters for the lower level distribution.
AbstractBayesianDistribution() - Constructor for class com.mapr.stats.random.AbstractBayesianDistribution
 
add(double) - Method in class com.mapr.stats.random.AbstractBayesianDistribution
 
add(double) - Method in class com.mapr.stats.random.BetaBinomialDistribution
 
add(double) - Method in class com.mapr.stats.random.GammaNormalDistribution
Adds an observed sample \(x\) to the distribution.
addModelDistribution(AbstractBayesianDistribution) - Method in class com.mapr.stats.bandit.BayesianBandit
 
addModelDistribution(AbstractBayesianDistribution) - Method in class com.mapr.stats.bandit.EpsilonGreedy
 
apply(double) - Method in class com.mapr.stats.bandit.ContextualBayesBandit.InverseLogisticFunction
 
apply(double) - Method in class com.mapr.stats.bandit.ContextualBayesBandit.LogisticFunction
 
averageRegret(String, int[], int, int) - Static method in class com.mapr.stats.bandit.BanditTrainer
Computes average regret relative to perfect knowledge given uniform random probabilities.

B

BanditFactory - Class in com.mapr.stats.bandit
Factory interface for creating bandit solvers.
BanditFactory() - Constructor for class com.mapr.stats.bandit.BanditFactory
 
BanditRanking - Class in com.mapr.bandit
Implements a Bandit ranking.
BanditRanking() - Constructor for class com.mapr.bandit.BanditRanking
 
BanditTrainer - Class in com.mapr.stats.bandit
Simulate a two-armed bandit playing against a beta-Bayesian model.
BanditTrainer() - Constructor for class com.mapr.stats.bandit.BanditTrainer
 
BayesianBandit - Class in com.mapr.stats.bandit
Implements the common characteristics of the Bayesian Bandit.
BayesianBandit() - Constructor for class com.mapr.stats.bandit.BayesianBandit
 
BetaBayesFactory - Class in com.mapr.stats.bandit
Factory that creates a BetaBayesModel for solving a multi-armed bandit with binary {0,1} rewards.
BetaBayesFactory() - Constructor for class com.mapr.stats.bandit.BetaBayesFactory
 
BetaBayesModel - Class in com.mapr.stats.bandit
Multi-armed bandit problem where each probability is modeled by a beta prior and data about positive and negative trials.
BetaBayesModel() - Constructor for class com.mapr.stats.bandit.BetaBayesModel
 
BetaBayesModel(int, Random) - Constructor for class com.mapr.stats.bandit.BetaBayesModel
 
BetaBinomialDistribution - Class in com.mapr.stats.random
Implements a beta-binomial pair of conjugate distributions.
BetaBinomialDistribution(double, double, Random) - Constructor for class com.mapr.stats.random.BetaBinomialDistribution
 
BetaDistribution - Class in com.mapr.stats.random
Sample from a beta distribution.
BetaDistribution(double, double, Random) - Constructor for class com.mapr.stats.random.BetaDistribution
 
BetaDistribution(double, double) - Constructor for class com.mapr.stats.random.BetaDistribution
 
BetaWalk - Class in com.mapr.stats
Follow a Metropolis random walk that should converge to a beta distribution.
BetaWalk(double, double, double) - Constructor for class com.mapr.stats.BetaWalk
 
BinomialDistributionSampler - Class in com.mapr.stats.random
 
BinomialDistributionSampler(double, double, Random) - Constructor for class com.mapr.stats.random.BinomialDistributionSampler
 

C

cdf(double) - Method in class com.mapr.stats.random.BetaDistribution
 
com.mapr.bandit - package com.mapr.bandit
 
com.mapr.stats - package com.mapr.stats
 
com.mapr.stats.bandit - package com.mapr.stats.bandit
 
com.mapr.stats.random - package com.mapr.stats.random
 
commitTime(String, int, double, double, int) - Static method in class com.mapr.stats.bandit.BanditTrainer
Records which bandit was chosen for many runs of the same scenario.
compareTo(DistributionWithMean) - Method in class com.mapr.stats.random.DistributionWithMean
 
ContextualBayesBandit - Class in com.mapr.stats.bandit
Solves the contextual bandit problem using Bayesian sampling.
ContextualBayesBandit(Matrix) - Constructor for class com.mapr.stats.bandit.ContextualBayesBandit
 
ContextualBayesBandit(Matrix, double, double) - Constructor for class com.mapr.stats.bandit.ContextualBayesBandit
 
ContextualBayesBandit.InverseLogisticFunction - Class in com.mapr.stats.bandit
 
ContextualBayesBandit.InverseLogisticFunction() - Constructor for class com.mapr.stats.bandit.ContextualBayesBandit.InverseLogisticFunction
 
ContextualBayesBandit.LogisticFunction - Class in com.mapr.stats.bandit
 
ContextualBayesBandit.LogisticFunction() - Constructor for class com.mapr.stats.bandit.ContextualBayesBandit.LogisticFunction
 
createBandit(int, Random) - Method in class com.mapr.stats.bandit.BanditFactory
 
createBandit(int, Random) - Method in class com.mapr.stats.bandit.BetaBayesFactory
 
createBandit(int, Random) - Method in class com.mapr.stats.bandit.EpsilonGreedyFactory
 
createBandit(int, Random) - Method in class com.mapr.stats.bandit.GammaNormalBayesFactory
 

D

DistributionGenerator - Class in com.mapr.stats.random
Generate a reference distribution for testing.
DistributionGenerator() - Constructor for class com.mapr.stats.random.DistributionGenerator
 
DistributionWithMean - Class in com.mapr.stats.random
Represents a distribution that knows it's own mean.
DistributionWithMean(AbstractContinousDistribution, double) - Constructor for class com.mapr.stats.random.DistributionWithMean
 

E

EpsilonGreedy - Class in com.mapr.stats.bandit
Solves a bandit problem using an epsilon greedy algorithm.
EpsilonGreedy(int, double, Random) - Constructor for class com.mapr.stats.bandit.EpsilonGreedy
 
EpsilonGreedyFactory - Class in com.mapr.stats.bandit
Factory that creates an epsilon greedy bandit solver.
EpsilonGreedyFactory(double) - Constructor for class com.mapr.stats.bandit.EpsilonGreedyFactory
 

G

GammaNormalBayesFactory - Class in com.mapr.stats.bandit
Factory that creates GammaNormalBayesModel objects with a standard call.
GammaNormalBayesFactory() - Constructor for class com.mapr.stats.bandit.GammaNormalBayesFactory
 
GammaNormalBayesModel - Class in com.mapr.stats.random
Multi-armed bandit problem where each reward is normally distributed with a gamma prior.
GammaNormalBayesModel(int, Random) - Constructor for class com.mapr.stats.random.GammaNormalBayesModel
 
GammaNormalDistribution - Class in com.mapr.stats.random
Samples from a Gamma-Normal distribution.
GammaNormalDistribution(double, double, double, Random) - Constructor for class com.mapr.stats.random.GammaNormalDistribution
 
getAlpha() - Method in class com.mapr.stats.random.BetaDistribution
 
getBeta() - Method in class com.mapr.stats.random.BetaDistribution
 
getMean(int) - Method in class com.mapr.stats.bandit.BayesianBandit
Returns the mean of a particular distribution in the bandit
getMean() - Method in class com.mapr.stats.random.AbstractBayesianDistribution
 
getMean() - Method in class com.mapr.stats.random.BetaBinomialDistribution
 
getMean() - Method in class com.mapr.stats.random.DistributionWithMean
 
getMean() - Method in class com.mapr.stats.random.GammaNormalDistribution
 
getSamples() - Method in class com.mapr.stats.random.AbstractBayesianDistribution
 
getSamples() - Method in class com.mapr.stats.random.BetaBinomialDistribution
 
getSamples() - Method in class com.mapr.stats.random.GammaNormalDistribution
 

I

iterator() - Method in class com.mapr.stats.bandit.BayesianBandit
Returns an iterator over a set of elements of type T.

L

logPdf(double) - Method in class com.mapr.stats.random.BetaDistribution
 

M

main(String[]) - Static method in class com.mapr.bandit.BanditRanking
 
main(String[]) - Static method in class com.mapr.stats.bandit.BanditTrainer
 
mean() - Method in class com.mapr.stats.random.BetaDistribution
 

N

nextDistribution() - Method in class com.mapr.stats.random.BinomialDistributionSampler
 
nextDistribution() - Method in class com.mapr.stats.random.DistributionGenerator
 
nextDistribution() - Method in class com.mapr.stats.random.NormalDistributionSampler
 
nextDouble() - Method in class com.mapr.stats.random.AbstractBayesianDistribution
 
nextDouble() - Method in class com.mapr.stats.random.BetaBinomialDistribution
Samples from a binomial whose underlying probability is distributed according to a beta distribution.
nextDouble() - Method in class com.mapr.stats.random.BetaDistribution
Returns a random number from the distribution.
nextDouble(double, double) - Method in class com.mapr.stats.random.BetaDistribution
 
nextDouble() - Method in class com.mapr.stats.random.DistributionWithMean
 
nextDouble() - Method in class com.mapr.stats.random.GammaNormalDistribution
Returns a random number from the distribution.
nextMean() - Method in class com.mapr.stats.random.AbstractBayesianDistribution
 
nextMean() - Method in class com.mapr.stats.random.BetaBinomialDistribution
 
nextMean() - Method in class com.mapr.stats.random.GammaNormalDistribution
 
nextSD() - Method in class com.mapr.stats.random.GammaNormalDistribution
 
NormalDistributionSampler - Class in com.mapr.stats.random
Returns a normal distribution whose mean is uniformly distributed on [0,1) and whose sd is as specified.
NormalDistributionSampler(double, Random) - Constructor for class com.mapr.stats.random.NormalDistributionSampler
 

P

pdf(double) - Method in class com.mapr.stats.random.BetaDistribution
 
posteriorDistribution() - Method in class com.mapr.stats.random.AbstractBayesianDistribution
 
posteriorDistribution() - Method in class com.mapr.stats.random.BetaBinomialDistribution
 
posteriorDistribution() - Method in class com.mapr.stats.random.GammaNormalDistribution
 

R

rank(int) - Method in class com.mapr.stats.bandit.BayesianBandit
Samples probability estimates from each bandit and orders the bandits in increasing order.

S

sample() - Method in class com.mapr.stats.bandit.BayesianBandit
Samples probability estimates from each bandit and picks the apparent best
sample() - Method in class com.mapr.stats.bandit.ContextualBayesBandit
 
sample() - Method in class com.mapr.stats.bandit.EpsilonGreedy
Samples probability estimates from each bandit and picks the apparent best
samplePi() - Method in class com.mapr.stats.bandit.ContextualBayesBandit
 
setAlpha(double) - Method in class com.mapr.stats.random.BetaDistribution
 
setBeta(double) - Method in class com.mapr.stats.random.BetaDistribution
 
setRandomGenerator(Random) - Method in class com.mapr.stats.random.BetaDistribution
Sets the uniform random generator internally used.
step() - Method in class com.mapr.stats.BetaWalk
 

T

totalRegret(String, String, int, int, int, BanditFactory, DistributionGenerator) - Static method in class com.mapr.stats.bandit.BanditTrainer
Computes average regret relative to perfect knowledge given uniform random probabilities.
train(int, double) - Method in class com.mapr.stats.bandit.BayesianBandit
Apply feedback to the bandit we chose.
train(int, boolean) - Method in class com.mapr.stats.bandit.ContextualBayesBandit
 
train(int, double) - Method in class com.mapr.stats.bandit.EpsilonGreedy
Apply feedback to the bandit we chose.
A B C D E G I L M N P R S T 

Copyright © 2013. All Rights Reserved.